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VITO
o Mission: As independent and customer-oriented research organization, VITO (around 600 

employees) provides innovative technological solutions as well as scientifically based advice 
and support in order to stimulate sustainable development and reinforce the economic and 
social fabric of Flanders.

o Active in Sustainable Technologies in the field of:
➢ Environment

➢ Energy

➢ Materials 

• Circular economy strategic advice for companies

• Recovery of materials from waste

• Shaping materials

➢ Remote sensing

o More information: www.vito.be Flemish Institute for Technological Research

https://vito.be/en/application-area/circular-economy-strategic-advice-companies
https://vito.be/en/application-area/recovery-materials-waste
https://vito.be/en/application-area/shaping-materials
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What and why hyperspectral 
and LiDAR data?
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What and why hyperspectral images?

Seeing is believing?

Discriminate real or fake leaves 

Hyperspectral imaging for material identification 

Human eyes typically respond to wavelengths

See the disease symptoms? 
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What and why hyperspectral images?

Materials identification

Naked eyes

Hyperspectral image

Cancer detection

Normal 

Cancer 

Advanced “seeing” + analysis enable better believing
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Applications of hyperspectral images
Precision agriculture: UAV + hyperspectral camera 
+ smart algorithms

 

?

Objective: Increase the crop productivity on both 
quality and quantity while reducing the cost

Forest tree mapping
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Cloud

Hyperspectral image
is difficult to detect objects under shadow

Shadow

Limitations of hyperspectral images
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What and why LiDAR data?

o LiDAR stands for Light Detection and 
Ranging, commonly known as Laser 
Radar

o LiDAR is not only replacing conventional 
sensors, but also creating new methods 
with unique properties that could not be 
achieved before

LiDAR image can penetrate 
clouds to measure the height 
of objects on the ground
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What and why LiDAR data?
Each time the laser is pulsed:
• Laser generates an optical pulse 
• Pulse is reflected off an object and returns to 

the system receiver
• High-speed counter measures the time of 

flight from the start pulse to the return pulse
• Time measurement is converted to a distance 

(the distance to the target and the position of 
the airplane is then used to determine the 
elevation and location)

• Multiple returns can be measured for each 
pulse

Everything that can be seen from the aircraft is 
measured
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Applications of LiDAR
3D urban planning Disaster managements

Landslide
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LIDAR Derived Products

Topographic LiDAR systems produce surface 
elevation x, y, z coordinate data points. There are 
many products that can be derived from raw point 
data. Most LiDAR providers can derive these 
products upon request:

• Digital Elevation Models (DEMs) 
• Digital Terrain Models (DTMs) (bald-earth 

elevation data) 
• Digital surface model (DSM): “top surface”

Shadow

LiDAR data

Leaf-on vs. leaf-off
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Shadow

Challenges
HS image LiDAR

C
la

s
s
ific

a
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n

✓ Single data source is not enough for a 

reliable classification

✓ HS and LiDAR images provide 

complementary information

✓ How to fuse multi-sensor data?
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Methods for feature extraction
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Multi-level features
Low-level neighborhood information

Spectral-spatial features
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Multi-level features
Middle-level morphological informationMorphological operations

(e.g., dilation and erosion) 

Closing

Structure element:

Math. morphology to incorporate the contextual information

Returning the maximum/minimum value within a 
moving window (structure element)

Closing: the combination of dilation and erosion
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Multi-level features

Size structuring element 

Morphological Closings

Contain spatial 
information (e.g., 
size, shape, etc.)

Morphological Profile 

0 3 6 9

Middle-level morphological information
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Multi-level features

0 1 3 5

Openings

Objects with high 
elevation disappear

Dark objects disappear

Closings

Morphology 

LiDAR

First Principal components of HS image

Openings 

LiDAR data
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Multi-level features
High-level deep learning features

Image 
segmentation

Deep learning features

Object-based features
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Multi-level features

Autoencoders are designed to reproduce their input, 
especially for images

Autoencoders

NN
Encoder

NN
Decoder

code

Compact representation of the input

code

Reconstruct the input

Learn together
28 X 28 = 784 

Usually <784 

Key point is to reproduce the input from a learned 
encoding



24

Multi-level features
Autoencoders

o Encoder:  compress input into a latent-space of usually smaller dimension.  h = f(x)

o Decoder: reconstruct input from the latent space.   r = g(f(x)) with r as close to x as possible

https://towardsdatascience.com/deep-inside-autoencoders-7e41f319999f
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Multi-level features
PCA

𝑥

Input layer

𝑊

ො𝑥

𝑊𝑇

output layer
hidden layer

(linear)

𝑐

As close as possible

Minimize 𝑥 − ො𝑥 2

Bottleneck later

Output of the hidden layer is the code

encode decode
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Multi-level features

Initialize by RBM 
layer-by-layer

Reference: Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural 
networks." Science 313.5786 (2006): 504-507

Of course, the auto-encoder can be deep
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Layer 

Layer 

Layer 

… …

Code

As close as possible

𝑥 ො𝑥

𝑊1
𝑊1

𝑇𝑊2
𝑊2

𝑇

Autoencoders
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Multi-level features
Deep autoencoders

Original Image

PCA

Deep Auto-encoder
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Multi-level features
Deep autoencoders
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Multi-level features
Deep autoencoders

Pixel -> tSNE

𝑐
NN

Encoder

PCA
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Multi-level features
Auto-encoder – Pre-training DNN
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Greedy Layer-wise Pre-training again
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Multi-level features
Auto-encoder – Pre-training DNN

Greedy Layer-wise Pre-training again

Ta
rg

et

784

1000

1000

500

10

Input

outpu
t

Input 784

1000

W1

1000

1000

fix

𝑥

𝑎1

ො𝑎1

W2

W2’



32

Multi-level features
Auto-encoder – Pre-training DNN

Greedy Layer-wise Pre-training again
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Multi-level features
Auto-encoder – Pre-training DNN

Greedy Layer-wise Pre-training again
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1000
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Input

output

Input 784

1000
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1000

𝑥
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500 500

10output

W4
Random init

Find-tune by 
backpropagation
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Methods for data fusion
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Data Fusion frameworks
HS image

LiDAR

✓Simple and easy 

M. Pedergnana, P. Reddy Marpu, et al. (2012), 
“Classification of Remote Sensing Optical and 
LiDAR Data Using Extended Attribute Profiles,” 
IEEE Journals on Selected Topics in Signal 
Processing, 6(7): 856–865.

× Increase the dimension 

× Complementary information 

not well exploited 

Fusion by simply stacking
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Data Fusion frameworks
Fusion by simply stacking

Hyperspectral (HS) image

Combine all 
(OA=87.5%)

OA=80.7%

o Single feature source is not 

sufficient for a reliable 

classification

o Simply combining all feature 

sources cannot solve the 

problems

LiDAR morph. featuresOA=68.4%

OA=82.4% HS morph. features
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Data Fusion frameworks
Complementary information in the multi-sensor data

LiDAR morphological features 
discriminate objects with different 
elevation

HS morphological features 
discriminate objects with different 
size/shape

Hyperspectral (HS) image provides spectral 
information to identify the materials
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Data Fusion frameworks
Graph-based fusion

Classification map

Classify

Reduce the complexities and 
redundancy while exploiting 

the complementary information

Objective: find a transformation matrix W ∊ ℜ N×d

W

XSta=[XSpe; XSpa ; XEle] ∊ ℜN

Y ∊ ℜd

Y = W
T
X, N > d
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Data Fusion frameworks

C. Debes, et al. (2014), “Hyperspectral and 
LiDAR Data Fusion: Outcome of the 2013 GRSS 
Data Fusion Contest,” IEEE Journal of Selected 
Topics in Applied Earth Observations and 
Remote Sensing, 7(6): 2405-2418.

Graph-based fusion

Graph G=(V,E) 

x1 x2 x3 x4 x5 xn

The edge E denotes ‘connection’ and ‘similarity’ 
between nodes

The node V means data points [x1, x2, …, xn]
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Data Fusion frameworks
Graph-based fusion

Hyperspectral image LiDAR features

means x3
Spe and x4

Spe have 
similar spectral reflection 

means x3
Ele and x4

Ele have
similar elevation
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1 0 0 1 0 1
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Data Fusion frameworks
Graph-based fusion

Stacking all morphological profiles

Construct the fusion graph G*=(V*,E*):

V*=[VSpe; VSpa; VEle],  E*=ESpe⊙ESpa⊙EEle, 

XSta=[XSpe; XSpa ; XEle]

Ei,j*=1 means xi
Sta and xj

Sta have similar characteristics      

on all terms of spectral, spatial and elevation. 

= ⊙ ⊙

G*=(V*,E*)
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Data Fusion frameworks
Graph-based fusion

W. Liao, et al. (2015), “Generalized Graph-Based 
Fusion of Hyperspectral and LiDAR Data Using 
Morphological Features,” IEEE Geoscience and 
Remote Sensing Letters, 12(3): 552-556.W

T
* =

XSta=[XSpe; X
Spa ; X

Ele] ∊ ℜ3D Y ∊ ℜd

𝐖𝑇𝐗𝑆𝑡𝑎 = 𝐘

arg min
𝐖 ∈ ℜ3𝐷×𝑑



𝑖,𝑗=1

𝑛

||𝐖𝑇𝑥𝑖
𝑆𝑡𝑎 − 𝐖𝑇𝑥𝑗

𝑆𝑡𝑎||2 𝐸𝑖,𝑗
∗Solve

The proposed method won the “Best Paper” award 
of 2013 IEEE GRSS Data Fusion Contest

Codes: https://telin.ugent.be/~wliao/Research.html
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Data Fusion frameworks
Deep learning fusion

Result
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Experimental comparisons
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Experimental data 

LiDAR image

False color image of original hyperspectral image with 144 bands

2.5 m spatial resolution

Training samples

Test samples

15 classes
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Experimental data 

Raw Morphological  profiles Deep Learning

HS image (OA=77.96%)

LiDAR image (OA=31.34%)

HS image (OA=84.02%)

LiDAR image (OA=75.43%)

HS image (OA=77.36%)

LiDAR image (OA=42.86%)
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Experimental data 

Stacking raw data (OA=79.6%) Stacking neighborhood features(OA=81.5%)

Graph fusion MPs (OA=89.9%) Deep learning fusion (OA=81.9%)
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Fusion results

✓ Multi-level features were exploited: 
morphological features outperform low-level and 
high-level deep learning features

✓ Graph-based fusion outperform than fusion by 
stacking and deep fusion
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Fractional Gabor Network 
for Multi-source classification
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Multi-source， Multi-feature fusion: Octave Convolutional layers

Redundant Information in Single Source

Complementarity

CooperationRedundancy

Source I 
performs well

Source II 
performs well

Two sources 
perform similar

Multi-source Fusion

Reduce redundancy, improve cooperation

Motivation
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Complex spatial 
information

Spatial-Spectral → Spatial-Spectral-Textural-Frequency:

Fractional Gabor Convolutional Layers

Limited Training Set Multi-domain Features  

Motivation
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II.  Fractional Gabor Convolutional Layers
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Spectral FCN branch: 1D operation

 C
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P1 Fractional 
Gabor-Conv

P2 Fractional 
Gabor-Conv

P3 Fractional 
Gabor-Conv

I. Multi-source Frequency Components Fusion

Lidar

 HSI 

HF Lidar

LF Lidar 

LF HSI

HF HSI

LF Fusion

HF Fusion
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III.  Classifier

Backward Propagation and Weights Update

[2021 TGRS] Zhao, X., Tao, R., Li, W., Philips, W. & Liao, W. (2021). Fractional Gabor Convolutional Network for Multi-source Remote Sensing Data Classification[J]. IEEE 
Transactions on Geoscience and Remote Sensing, 2021, DOI:10.1109/TGRS.2021.3065507. Github code link: https://github.com/xudongzhao461/FGCN

➢ Multi-Source Data ➢ Limited Training Set➢ Multi-source Feature

Method
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Experimental data 
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Dataset 3：Trento, 6 classes

HSI 

LiDAR 

Ground truth 

Trento  Data was acquired over a rural area 
in the south of the city of Trento, Italy. 

The data are composed of 600*166 pixels 
covering 6 classes with a spatial resolution of 
1m. 

The HSI data comprise 63 spectral bands 
covering the range from 0.42 to 0.99 μm .

Experimental data 
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Experimental data 
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Classification performance of different convolution kernel 
size, learning rate, low frequency rate, fractional order 
using FGCN .

Parameter Tunning

Experimental data 
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Experimental data 

Ablation Analysis:

Octave convolution layers can greatly improve the classification accuracy.

The difference between Octave-SSFCN and FGCN shows that fractional Gabor convolutional 
layers add diversity, discrimination, and robustness.

Spectral-Spatial feature contribute more than single kind.
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Experimental data 

Robustness to size of labeled samples, the proposed method consistently 
outperforms other methods using limited training samples. 

Robustness Analysis
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Experimental data 

Robustness under noisy 
condition, low spatial 
resolution condition.
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Fusion of Hyperspectral and LiDAR Data for Classification of 
Cloud-Shadow Mixed Remote Sensed Scene

R. Luo, W. Liao, H. Zhang, L. Zhang, P. Scheunders, Y. Pi, W. Philips, "Fusion of Hyperspectral and LiDAR Data for 
Classification of Cloud-Shadow Mixed Remote Sensed Scene", IEEE JSTARS, vol. 10, no. 8, pp. 3768 - 3781, 2017.
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Classification under shadow
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Classification under shadow
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Classification under shadow
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Classification under shadow
Proposed fusion method
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Classification under shadow

Cloud mask extraction

Area attribute profiles(>5000)

Binarization
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Classification under shadow
Proposed fusion method
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Classification under shadow

Proposed: Co-training samples selection
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Classification under shadow

(0)spe

cm

(0)spe

cm
is the center of class c in 
spectral space

'Map ( )lid iy c=

The following samples (under 
cloud shadow) are classified 
into the same  class c                   
based on single LiDAR data.

'( )iy c=

These samples are misclassified
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Classification under shadow

(0)spe

cm

Select the k-nearest neighbors of the center as 
training samples under shadow 
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Classification under shadow

(0)spe

cm

(1)spe

cm

(1)spe

cm is the center of class c
based on the set ( (0))spe

ckNN m
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Classification under shadow

(0)spe

cm

(1)spe

cm

1 1X {x : x ( (1)), x ( (1))}c Sta spe spe spa spa

train i c ckNN kNN=  m m

Find the KNN of the new 
center of spectral features

Find the KNN of the new 
center of spatial features
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Classification under shadow

spe

cM

1

speX

spa

cM

k-nearest neighbors 

in spectral feature 

space

k-nearest neighbors

in spatial feature space

＋

1 3X {x x }c Sta Sta

train = ；

1

spaX

5

spaX

3

spaX

6

spaX

2

speX
3

speX

4

speX

Class c Class c

'{ ; },Sta spe spa

i i i iy c= =x x x

1 1X {x : x ( ), x ( )}c Sta spe spe spa spa

train i c ckNN kNN=  m m
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Classification under shadow

LiDAR image

False color image

Training samples

Test samples

Size:

349 1905

Bands: 
144

Classes:
15

Spatial resolution:
2.5 m/pixel

Experimental data 
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Classification under shadow

Spectral LiDAR Multi-features

Feature Fusion ProposedLiao15

Classification maps for 
cloud-covered regions  
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Classification under shadow

Accuracies for cloud-
covered regions  
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Classification under shadow

Accuracies for whole 
scene
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Conclusion

✓ Compare different features for HS and LiDAR images 

✓ Compare different fusion framework for fusion of HS and LiDAR data for classification

✓ Fusion of Hyperspectral and LiDAR Data for Classification of Cloud-Shadow Mixed Remote 

Sensed Scene

Future works：

o Graph Convolutional Network and Label Propagation for Cross-domain classification

o Generative Adversarial Network for Multi-source Cross-domain Classification


